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Requirements

Required average luminosity for a 2× 750 GeV collider: ≥ 2×1034 cm−2 s−1.

Machine parameters vary depending on the available number of muons and their emit-

tance.

Expectations:

high transv. emittance low transv. emittance

Nb × Nmuons/bunch 1 × 20 · 1011 10 × 1 · 1011

∆p/p 0.1% 1%

εN 25 µm 2 µm
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Orientative design guide lines:

• β∗ ( ≤ 1 cm )

• small circumference (luminosity!)

• small momentum compaction factor ( |αp| . 1×10−4) to achieve 1 cm long

bunches with a reasonable RF voltage

• large momentum acceptance

• sufficient Dynamic Aperture (& 3σ)
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Issues:

• the lowa β∗ means

-large sensitivity to alignment and field errors of the IR quadrupoles

-large chromatic effects

• large chromatic effects limit the momentum acceptance and require strong

correction sextupoles

• large non-linearities limit the Dynamic Aperture

• muon decay sets severe background conditions and calls for a close work with magnet

and detector designers; a group of experts has been formed to address these issues

a for comparison: the LHC IR upgrade foresees β∗=0.25; HERA-p (920 GeV) β∗
y was 0.18 m
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The situation so far

The idea of a MC is not new a. There are around several more or less mature designs,

but currently none fullfills all requirements.

The most recent and promising ones are presented. Some of the older studies include

extensive considerations on background and shielding, not considered here.

People working on the MC optics design (beside myself):

Y.Alexahin, A. Bogacz, C. Johnstone, P. Snopok.

Some people are currently mostly concentrated on different aspects of the project.

In the next future we will profit of the help of W. Wan (LBNL) and PhD student

A. Netepenko.

aproposed by Budker in 1967
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Non-interleaved Sextupoles Optics

The non-interleaved scheme requires an optics “ad hoc”: the transfer matrix between

couple of sextupoles must be a pseudob −I in both planes so that the kicks on a particle

going through one sextupole is canceled by the next one.

Original Oide design (from 1996):

• β∗=3 mm (β̂= 900 km !)

• L=5700 m, one IP, 2.5π cell arcs (with negative αcell
p ), αp=5×10−5

• IR chromaticity is corrected by 2 pairs of non-interleaved sextupoles located at the

closest Dx 6=0 knot location of the chromatic β−wave

• non-interleaved chromaticity correction scheme for the arcs

• very large DA c, even in presence of energy oscillations

• large energy acceptance obtained by optimizing sextupoles (22 families, very strong),

octupoles and decapoles.
bα1 6= α0
c computed by SAD, fringe fields included
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The optics is very sensitive to misalignment errors (Y. Alexahin, MCD Workshop, BNL

Dec 2007) and therefore unfeasible “as it is”.

A larger β∗, and thus more reasonable β̂, should help.

“Oide inspired” optics

A first attempt

• IR magnets unchanged wrt Oide design, but β∗ increased to 10 mm

→ β̂y=275 km

• add a dispersion free section for RF cavities and tuning quadrupoles

• use 2.5π cells, but reduce magnet length (Oide bends: L=22 m long, B=3.7 T @

750 GeV)→ L=4855 m (one IP)

• use 2 different cell bending angles to get an handle on arc dispersion,

yet αp=1.8e-4 !

• tunes, Qx=30.55 and Qy=30.45, are chosen to get maximum stability range under

the assumption that the machine is stable near the half integer (KEKB does it!).
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IR
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• IR chromaticity corrected with one

couple of sextupoles per plane

• ring chromaticity corrected with one

family per plane

MAD chromatic functions
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Tunes vs. dp/p
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nb: the momentum compaction is too large for a 1 cm long bunch
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Dynamic Aperture

Tune Dependence

on Amplitude (no octupoles)
(MAD8 STATIC)

dQ1/dE1 0.50× 103

dQ1/dE2 0.30× 104

dQ2/dE2 -0.16× 107

Dynamic Aperture (on energy)
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at least ∼5 sigma’s (εN=25 µm) !
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Off energy DA with Synchrotron Motion (MAD8)

∆p/p=5e-3
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“Dipole First”

Local chromatic correction

Montague chromatic functions describing the change of the twiss parameters with mo-

mentum δ ≡ ∆p/p

B ≡
∆β

β
and A ≡ β∆

(α
β

)
dB

ds
= −2A

dµ

ds
and

dA

ds
= 2B

dµ

ds
+
√
β(0)β(δ)∆K

As long as dµ/ds= 0 it is B=0⇒ β and phase are momentum independent.

Idea: the large chromatic beta wave created by the IR quadrupoles should be compen-

sated locally, that is before the phase advance changes after the first quadrupole.

For Dx=D′x=0 at the IP, this requires introducing bending magnets close to the IP.
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Dipole First a

• Local IR chromaticity correction (à la Montague). It needs a relatively strong bend

magnet (B=7.5 T, `=4 m) at 2.5 m from the IP.

• 2 interleaved sextupole families in the 108 deg FODO based arcs.

• compact: L = 3110 m, 2 IP’s

To make use of the local chromaticity correction w/o introducing the “nasty”(?) bending

magnet near the IP and keeping Dx=0 at the IP, it must be D′x 6= 0 at IP.

Thus the kick from the first sextupole adds up to the kick of its twin on the other side

of the IP. Likely it is not a good alternative.

a https://mctf.fnal.gov/databases/lattice-repository
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Dipole First Optics
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Yuri updated version (Y. Alexahin, MCDW, JLAB Dec 2008) shows large improvement

of DA wrt NFMCC07 version.

Likely it could be improved further by more systematic optimization of multipoles
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IR on-interleaved sextupoles optics

Trying combining best of both IR chromaticities correction:

• re-design the IR, keeping the Oide “asymmetry”: allow the β in the plane which

chromaticity is first corrected to grow larger than the other one

• use non-interleaved scheme for correcting IR chromaticity, but place first sextupole

at ∆µ=0 from IR quads the fact that the phase advance across the IP is π allows

to spare its twin sextupole and relative −I section
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Trying shortening arc:

• 2.5 π cells replaced by 90 degree FODO cells

• more compact arcs (L =3588 including a “tuning/RF” section, one IP) obtained

by increasing the bending angle (`B ' 14 m) and decreasing the number of cells

• interleaved chromaticity correction in arcs: likely the small arc chromaticity does

not require a non-interleaved chomaticity correction scheme

• bending structure modified by reversing the bending magnet polarity of one over 6

FODO cells to get small αp
a

aof course this makes the ring longer...
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IR Twiss functions
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MAD chromatic functions
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Dynamic Aperture

Tune Dependence

on Amplitude (with two octupoles)
(MAD8 STATIC)

dQ1/dE1 0.60× 104

dQ1/dE2 0.20× 102

dQ2/dE2 -0.5× 104

Dynamic Aperture (on energy)

(MAD-X PTC)
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at least 5 sigma’s (εN=25 µm) !

⇒ Suppressing the twin of the first couple of sextupoles and the interleaved chromaticity

correction in the arcs did not affect negatively the DA !
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P. Snopok (NFMCC, FNAL March 08):

• 6 Km long ring

• COSY used for multipole optimization

• isochronous up to 3th order, very flexible arcs

• but DA problematic
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Summary and Outlook
• new ideas for the IR layout and chromaticity correction have been investigated

• it is difficult to meet all requirements at once

• progress have been done on “dipole first” DA

• the “best fit” of all constraints is offered at the moment by the “dipole first” optics

• energy deposition group is going to look into the impact of the dipole close to the

IP; all designs are likely to profit from its presence.
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Additional slides:

The longitudinal phase space

The fact that α0
p is small makes higher order terms important:

trajectories in longitudinal phase space are deformed and the stable region is asymmetric!

360 MV @ 600 MHz
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a particle starting with (0,-7.5e-3) reaches

∆p/p=+9e-3 after half synchrotron pe-

riod and is lost if the ring is not stable!

This effect may reduce further the energy range of the machine!
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360 MV @ 600 MHz
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The effect is more evident for the “dipole

first” optics, version with αp= 9.7e-5.

The (dp/p)t=0=+5e-3 trajectory is ob-

tained in 2th order approximation.
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